
Available online at www.sciencedirect.com

Neuromodulatory control of striatal plasticity and behavior
Talia N Lerner1,3 and Anatol C Kreitzer1,2,3
Excitatory synapses onto projection neurons in the striatum,

the input nucleus of the basal ganglia, play a key role in

regulating basal ganglia circuit function and are a major site of

long-term synaptic plasticity. Here, we review the mechanisms

and regulation of both long-term potentiation and long-term

depression at these synapses. In particular, we highlight the

role that neuromodulators play in determining the strength and

direction of plasticity, which ultimately shapes the balance of

activity in basal ganglia circuits and regulates motor behavior.
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Introduction
The basal ganglia are a network of subcortical brain nuclei

important for action selection and motor learning [1–4].

Our understanding of basal ganglia circuit function has long

been dominated by the classic Albin-DeLong model,

based on the clinical manifestations of Parkinson’s and

Huntington’s Diseases. In this model, information flows

through the basal ganglia in two parallel circuits – the direct

and the indirect pathways – which diverge from the main

input nucleus of the basal ganglia, the striatum, and con-

verge again in the output nuclei of the basal ganglia. The

Albin-DeLong model postulates that increased activity of

the direct pathway facilitates movement, whereas

increased activity of the indirect pathway inhibits move-

ment. While this is an oversimplification of the complex

basal ganglia circuit (for review see [5]), recent tests of the

model have lent support to its general structure. Using

viral-mediated cell-type-specific expression of channelr-

hodopsin-2, our lab demonstrated that firing rates of direct-

pathway and indirect-pathway medium spiny neurons

(MSNs), the projection neurons of the striatum, control

different aspects of movement in the directions predicted
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by the Albin-DeLong model [6]. Further evidence for this

hypothesis comes from experiments that selectively

lesioned indirect-pathway MSNs, a manipulation that

led to dramatic increases in locomotor behavior [7].

Given that the firing rates of direct-pathway and indirect-

pathway MSNs directly influence movement, it is import-

ant to ask what physiological mechanisms regulate MSN

firing rates. In order to fire any spikes at all, MSNs rely on

excitatory input from cortex and thalamus [8]. Therefore,

modulation of excitatory synaptic input strength should

be particularly effective at modulating MSN firing rates.

Indeed, plasticity at excitatory synapses onto MSNs is

involved in motor skill acquisition [9,10], and is disrupted

in animal models of movement disorders, including Par-

kinson’s disease and dystonia [11��,12��,13–16].

Although synaptic plasticity at excitatory inputs to MSNs

has been studied extensively, the detailed mechanisms

underlying its expression and regulation remain

unknown. Fortunately, our understanding of plasticity

in the striatum has benefitted greatly from the recent

generation and use of BAC transgenic lines that allow

easy identification of MSNs of the direct and indirect

pathways [17,18]. The BAC reporter lines rely on the

differential expression of G-protein-coupled receptors

(GPCRs) in the two types of MSNs: indirect-pathway

neurons selectively express Gi-coupled dopamine D2 and

Gs-coupled adenosine A2A receptors, whereas direct-

pathway neurons selectively express Gi-coupled muscar-

inic acetylcholine M4 receptors and Gs-coupled dopa-

mine D1 receptors. Thus, fluorescent proteins expressed

from the promoters of these receptors selectively label

either the indirect or the direct pathway. Differential

expression of these Gi and Gs-coupled GPCRs by the

two MSN subtypes is not just an experimentally useful

coincidence, but reflects important differences in the way

that the neuromodulators dopamine, adenosine, and

acetylcholine control plasticity in the two pathways. Un-

derstanding the molecular mechanisms that regulate

LTP and LTD in the striatum is crucial because it will

allow us to better understand the circuit-level mechan-

isms that underlie action selection and motor learning by

the basal ganglia circuit. Furthermore, understanding the

mechanisms by which dopamine, adenosine, and acetyl-

choline control striatal plasticity and basal ganglia circuit

function will aid the search for new treatments for Par-

kinson’s disease and other basal ganglia disorders.

Indirect-pathway LTD
In indirect-pathway MSNs, long-term depression (LTD)

of excitatory inputs occurs in response to high frequency
www.sciencedirect.com
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(100 Hz) stimulation paired with postsynaptic depolariz-

ation, or in response to negative spike timing (i.e. synaptic

stimulation delivered shortly after the MSN spikes)

[11��,12��,19–21]. The mechanisms underlying indirect-

pathway LTD appear to be similar using both protocols.

LTD is induced postsynaptically by activation of Gq-

coupled mGluRs and L-type calcium channels, which

together lead to the mobilization of endocannabinoids

[11��,12��,22–24]. Endocannabinoids then travel retrogra-

dely across the synaptic cleft and activate presynaptic

CB1 receptors [22,25]. Prolonged activation of CB1 recep-

tors (several minutes) leads to presynaptic expression of

LTD as a decrease in release probability [26]. Successful

induction of indirect-pathway LTD requires activation of

dopamine D2 receptors, but also lack of activation of

postsynaptic adenosine A2A receptors [12��,27�]. Thus,

by regulating the activation of these GPCRs, dopamine

and adenosine gate LTD induction in indirect-pathway

MSNs.

The most likely downstream mediator of D2 and A2A

receptor signaling is cAMP. D2 and A2A receptors are

oppositely coupled to cAMP accumulation, just as they

are to LTD induction. Additionally, adenylyl cyclase 5

knockout mice have impaired indirect-pathway LTD and

the mechanism of LTD impairment is upstream of Gq-

coupled mGluRs [28�]. We do not, however, understand

the mechanism of D2 and A2A receptor modulation of

LTD downstream of cAMP. Is PKA involved? If so, what

are its relevant substrates? Mapping out the convergent

signaling cascades of D2, A2A, and mGlu receptors as well

as L-type calcium channels remains an important area of

research.

Indirect-pathway LTP
Long-term potentiation (LTP) was first observed at

excitatory synapses onto MSNs using sharp electrodes

and an extracellular solution containing 0 mM Mg2+ [29].

Under these conditions, LTP is induced by high-

frequency stimulation. More recently, LTP has been

elicited in the presence of physiological Mg2+ concen-

trations using perforated patch recordings and positive

spike timing (i.e. synaptic stimulation delivered shortly

before the MSN is induced to spike) [12��,30]. LTP is

postsynaptically expressed and depends on postsynaptic

NMDA receptor activation [10,12��,29,31]. Two recent

studies also indicate that the neurotrophic factors FGF

and BDNF promote LTP in MSNs, probably through

enhancement of NMDA currents [31,32].

In indirect-pathway MSNs specifically, LTP requires

A2A receptor activation as well as a lack of activation

of D2 receptors, since a D2 agonist can convert the spike-

timing dependent LTP into LTD [12��,31]. Thus, D2

and A2A receptors gate LTP induction as well as LTD

induction. High dopamine levels and low adenosine

levels will shift plasticity induction in indirect-pathway
www.sciencedirect.com
MSNs towards LTD. By contrast, low dopamine levels

and high adenosine levels will promote LTP in indirect-

pathway MSNs.

As with LTD, it is not known how D2 and A2A receptors

are able to modulate LTP. However, some clues exist.

Since sharp electrodes or perforated patch recordings are

required to observe LTP, diffusible signaling molecules

are probably involved. Additionally, it was recently shown

that D2 and A2A receptors oppositely modulate NMDA

receptor signaling through PKA [33�]. It is not yet clear,

however, whether postsynaptic PKA is in fact involved in

LTP and, if so, what the relevant substrates of PKA are for

this process.

Direct-pathway LTD
LTD in direct-pathway MSNs is not as well studied as it

is in indirect-pathway MSNs, but the literature suggests

that its mechanisms, involving postsynaptic Gq-coupled

mGluRs and L-type calcium channels and presynaptic

CB1 receptors, are similar. LTD in direct-pathway MSNs

is blocked by a CB1 receptor antagonist as well as by a Gq-

coupled mGluR antagonist [12��]. Additionally, LTD

induced by pharmacological activation of L-type calcium

channels has been observed in both direct-pathway and

indirect-pathway MSNs [24].

Although the mechanisms of LTD at excitatory synapses

onto direct-pathway MSNs are probably similar to those

in indirect-pathway MSNs, the activation of mGluRs and

L-type calcium channel signaling, and therefore LTD

itself, may be gated by different neuromodulator recep-

tors. Direct-pathway MSNs do not express D2 and A2A

receptors, but they do express a complementary pair of

Gs-coupled and Gi-coupled receptors: dopamine D1 and

acetylcholine M4 receptors [34]. Using a spike-timing

dependent induction protocol, Shen et al. observed LTD

in direct-pathway MSNs when D1 receptors were

blocked [12��]. This finding may explain why earlier

studies of striatal LTD [11��] failed to observe LTD at

direct-pathway synapses: if dopamine release is stimu-

lated by an intrastriatal stimulating electrode, this dopa-

mine can activate D1 receptors and block direct-pathway

LTD. D1 receptors may thus act similarly to A2A recep-

tors in the indirect pathway, whereas M4 receptors could

act similarly to D2 receptors in the indirect pathway. The

role of M4 receptors in LTD has not yet been explored

experimentally, but M4 is an attractive candidate for a Gi-

coupled D2-analog in the direct pathway [35].

Direct-pathway LTP
The only existing study of LTP in identified direct-

pathway MSNs to date showed that LTP can be induced

at direct-pathway synapses by positive spike timing using

perforated-patch whole-cell recordings [12��]. This LTP

required NMDA receptors, just as it did in indirect-

pathway MSNs, but also depended on activation of D1
Current Opinion in Neurobiology 2011, 21:322–327
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receptors. An older study using sharp electrodes also

found that D1 receptors are required for LTP [36]. Thus,

in LTP as in LTD, D1 receptors appear to act analo-

gously to A2A receptors in the indirect pathway, implying

that cAMP/PKA signaling is probably required to initiate

LTP induction in direct-pathway MSNs.

Striatal neuromodulators transduce
behavioral states into appropriate patterns of
motor behavior
An important theme that emerges from the body of data

summarized above is that the relative levels of neuromodu-

lators present in the striatum at any given time determines

whether excitatory glutamatergic signaling causes

synapses in the striatum to increase or decrease in strength.

Indeed, the behavioral state of an animal can influence the

direction of striatal plasticity observed [37]. This suggests

that one important role of striatal neuromodulators is to

transduce salient environmental cues or changes in internal

state into appropriate patterns of motor behavior

(Figure 1). Release of the most widely studied striatal

neuromodulator, dopamine, occurs in response to a variety

of stimuli on a wide range of timescales (from milliseconds

to hours) [38]. While reward-related signals are generally

fast, slower modulation of striatal dopamine occurs in
Figure 1
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response to internal states such as uncertainty, curiosity,

hunger, aggression, and fatigue [38].

Hunger, an extremely ethologically relevant internal

state, increases dopamine levels [39,40]. High dopamine

levels will cause a weakening of indirect-pathway

synapses and strengthening of direct-pathway synapses,

leading to increased locomotor behavior required to for-

age for food. By contrast, a sated animal would have lower

dopamine levels that would cause LTP of indirect-path-

way synapses and LTD of direct-pathway synapses, lead-

ing to more immobility, enabling the animal to digest

food and store energy.

As another example, consider the role of adenosine in the

CNS. It is hypothesized to provide a readout of overall

metabolic load (though its exact mechanisms of release in

the striatum are unclear) [41]. Increased levels of adeno-

sine, perhaps associated with prolonged wakefulness,

would lead to activation of striatal A2A receptors on

indirect-pathway MSNs. This in turn would promote

LTP and inhibit LTD at excitatory afferent synapses,

leading to an overall increase in indirect-pathway MSN

activity and a reduction in locomotor activity, enabling

the animal to sleep or conserve energy.
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In healthy animals, variations in the levels of striatal

neuromodulators will lead to motivated or apathetic states

within the normal range of the animal’s behavior. How-

ever, persistently high striatal dopamine may cause

hyperactivity and dyskinesias whereas persistently low

dopamine, as in Parkinson’s disease, causes immobility.

An important assumption of this scheme is that ‘long-

term’ plasticity in the striatum may only last for minutes

to hours, or until it is reversed by an opposing form of

synaptic plasticity (an issue that is discussed in the next

section of this review). This is in contrast to long-term

plasticity in motor cortex, which is associated with motor

memories that can last for the lifetime of the organism

[42,43]. In fact, motor memory may be initially shaped by

the basal ganglia but ultimately consolidated in motor

cortex.

LTD and LTP: opponent processes?
Functionally, LTD and LTP are opponent processes, but

are the induction of LTD and the induction of LTP

linked mechanistically? An attractive hypothesis that

emerges from the body of data summarized above is that

cAMP/PKA signaling links the two processes by oppo-

sitely modulating them. Enhanced PKA activity increases

NMDA receptor signaling and therefore should promote

LTP. Low PKA activity (or at least low cAMP) biases

MSNs towards LTD. Testing of this hypothesis awaits

future experiments. In the meantime, however, it also

begs the question: what are the targets of PKA at excit-

atory synapses onto MSNs? How could PKA influence

both Gq-coupled mGluR and L-type calcium channel

signaling (for LTD) and NMDA receptor signaling (for

LTP)?

There are many possible targets for PKA. For LTP, one

possibility is that PKA phosphorylates NMDA receptors

directly to activate them. Other possible targets include

the striatal-enriched phosphatases STEP46 and STEP61,

and DARPP-32, all of which are expressed by MSNs and

contain known PKA phosphorylation sites [44,45]. PKA

phosphorylation causes DARPP-32 to inhibit PP1. Inhi-

bition of PP1, in turn, increases the phosphorylation of

NMDA and AMPA receptors, activating them [46]. PKA

phosphorylation, as well as inhibition of PP1, also

regulates STEP activity. Postsynaptic STEP and

DARPP-32 signaling might be especially important for

LTP since LTP is postsynaptically expressed. In agree-

ment with this view, a mutant substrate-trapping form of

STEP prevents LTP but not LTD [47�] and the loss of

DARPP-32 prevents LTP in both direct-pathway and

indirect-pathway MSNs [48�].

For LTD, the possible targets of PKA (postsynaptically)

must be involved in the mGluR or L-type calcium chan-

nel signaling pathways that lead to endocannabinoid

production. One group found that D1 receptor agonists

potentiated Gq signaling in a PKA-dependent manner in
www.sciencedirect.com
HEK cells [49]. PKA might be able to regulate Gq

signaling by phosphorylating it directly, or by phosphor-

ylating some downstream components of the signaling

pathway such as PLCb or IP3 receptors, or by phosphor-

ylating Regulators of G-protein Signaling (RGSs) or G-

protein-coupled Receptor Kinases (GRKs). Others have

found that D1 receptor agonists can enhance L-type

calcium channel currents via cAMP/PKA signaling

[50,51], raising the possibility that L-type calcium chan-

nels could be a direct or indirect target of PKA modu-

lation.

The issue of whether LTD and LTP are mechanistically

linked also raises another crucial unanswered question in

the field. How can LTD and LTP act as opponent

processes if the former is expressed presynaptically while

the latter is expressed postsynaptically? By undergoing

LTD, and then later LTP, a MSN synapse would not

return to its original state, but would end up with a low

presynaptic release probability but a robust ability to

detect and respond to release events postsynaptically.

Do all MSN excitatory synapses eventually become

‘locked’ in this state? If so, synaptogenesis would be

required to support continued plasticity (and, presum-

ably, motor learning) in adulthood and the hypothesis put

forth in the previous section would be invalid. Alterna-

tively, there might be homeostatic resetting mechanisms

for MSN synapse strength. Such resetting mechanisms

might be active – de-potentiation/de-depression mech-

anisms – or passive – slow resetting caused by constant

cycling of cellular components. De-potentiation of MSN

synapses has been observed using low-frequency stimu-

lation (1–2 Hz) and involves apparently postsynaptic

mechanisms including signaling by DARPP-32, PP1,

and STEP [31,47,52,53]. De-depression of endocannabi-

noid-mediated LTD has not, to our knowledge, been

demonstrated. Evidence for passive resetting of MSN

synapse strength is also scant, but passive resetting cannot

yet be excluded as a possibility. The solution to the

question of how MSNs maintain their ability to undergo

plasticity will be crucial to our understanding of how the

basal ganglia support action selection and learning pro-

cesses.

Conclusion
Our understanding of striatal plasticity has advanced

rapidly in the past few years. With the advent of BAC

transgenic mice that allow identification of direct-path-

way and indirect-pathway MSNs both in vitro and in vivo,

the field has finally begun to come into focus. Recordings

from different populations of striatal MSNs have demon-

strated distinct forms of synaptic plasticity at their excit-

atory inputs, which are differentially regulated by

neuromodulators. These striatal neuromodulators may

represent a key interface between the state of an animal

and its motor behavior, enabling an animal to adjust its
Current Opinion in Neurobiology 2011, 21:322–327
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activity patterns in accordance with an ever changing

internal and external environment.
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